tokenizer
在transformers
中的tokenizer
往往会有,以Qwen2.5-7B-Instruct
为例,其tokenizer_config.json
中有存在chat_template
的键,其值如下:
plaintext"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
该模版是用于tokenizer.apply_chat_template
函数中,通过调用该模版,将多轮对话的messages
变成字符串,如下所示。
pythonfrom transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("/data1/HF-Models/Qwen/Qwen2.5-7B-Instruct")
chat = [
{"role": "user", "content": "Hello, how are you?"},
{"role": "assistant", "content": "I'm doing great. How can I help you today?"},
{"role": "user", "content": "I'd like to show off how chat templating works!"},
]
tokenizer.apply_chat_template(chat, tokenize=False)
输出如下:
plaintext<|im_start|>system You are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|> <|im_start|>user Hello, how are you?<|im_end|> <|im_start|>assistant I'm doing great. How can I help you today?<|im_end|> <|im_start|>user I'd like to show off how chat templating works!<|im_end|>
如果设置,add_generation_prompt=True
,则打印结果如下:
plaintext<|im_start|>system You are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|> <|im_start|>user Hello, how are you?<|im_end|> <|im_start|>assistant I'm doing great. How can I help you today?<|im_end|> <|im_start|>user I'd like to show off how chat templating works!<|im_end|> <|im_start|>assistant
很简单,只需编写一个 jinja 模板并设置 tokenizer.chat_template。您可能会发现,从另一个模型的现有模板开始,然后根据您的需要简单地对其进行编辑会更容易!例如,我们可以采用上面的 LLaMA 模板,并将 “[ASST]” 和 “[/ASST]” 添加到助手消息中:
pythontemplate = tokenizer.chat_template
template = template.replace("SYS", "SYSTEM") # Change the system token
tokenizer.chat_template = template # Set the new template
tokenizer.push_to_hub("model_name") # Upload your new template to the Hub!
本文作者:Geaming
本文链接:
版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!